310+ Electronic trip units

Molded-case circuit breakers

Faster than Instantaneous

EAT•N

Powering Business Worldwide

Safety matters with Eaton's Arcflash Reduction Maintenance System ${ }^{\text {TM }}$

Benefits of the Arcflash Reduction Maintenance System unit
At Eaton, safety is the No. 1 priority. It is our goal not only to provide innovative solutions for our customers, but also to create products that help ensure the safety of personnel.

Eaton is improving personnel safety with its Arcflash Reduction Maintenance System technology, also called Maintenance Mode which responds nearly three times faster when an arcing fault is present. Other circuit breaker manufacturers address the danger of arc flash incidents by dialing down pickup settings to the Instantaneou function, so that the circuit breaker responds with no intentional delay at lower levels of arcing current.

This technology, featured in Eaton molded-case circuit breakers equipped with the $310+$ electronic trip units covering applications from 55A through 2500A allows the breaker to respond more quickly to an arcing fault condition, which not only lears the fault faster, but also significantly educes the release of potentially harmfu arc flash energy.

Faster clearing time means less arc energy Less arc energy exposure means improved worker safety

- Increased worker safetywhen enabled, the Arcflas
Reduction Maintenance System provides an
accelerated trip to reduce
arc flash up to 60% faster than standard instantaneous tripping \bullet
Reduction in incident energy levels due to an arc flash may allow reduced levels of personal protective equipment
(PPF) to (PPE) to be used, increasing
worker comfort and mobility
Using molded-case circuit breakers with Eaton 310+ electronic trip units, the operator can pre-select from three levels of protection to
facilitate the maximum arcflash reduction, while also avoiding nuisance tripping during planned startup and
maintenance operations, without having to manual adjust the normal operationa trip unit settings 0
Eaton 310+ electronic trip units address the Nation
Electrical Code® ${ }^{\text {S }}$ Section 240.87 for Arc Energy Reduction. These molded-case Circuit breakers provide two
approved methods to reduce arc energy: energy-reducing maintenance switching with local status indicator and zone selective interlocking
- Typical tested values for Eaton molded.case
- Series © ${ }^{*} \mathrm{~K}$.-Fame includes a fixed remot

$310+$ trip unit technology

 available across molded-case circuit breakersEaton molded-case circuit breakers offer a common electronic trip unit offering from 15A through 2500A The Digitrip ${ }^{\text {TM }}$ RMS 310+ electronic trip unit (ETU) offers a wide range of selectable settings and optional features to fit your electrical application needs.
www.eaton.com/310plus

No more rating plugs The $310+$ ETU offers a range
of adjustability of Long (L), Short (S), Instantaneous (I) and Ground (G) settings. The 310+
contains an integrated $I_{\text {r switch }}$ contains an integrated Io switch continuous current rating of the breaker as the application
demands. The eight-position I. demands. The eight-position
switch enables a multitude of continuous current settings base on application requirements.
Ordering, stocking and managing various amperages of rating plugs is no longer required.

Adjustable curve shaping Users of the $310+$ ETU will
enjoy the 1 t curve shaping functions enabled by the L, S, I and G adjustability. These for applications demanding breaker coordination and circuit customization. The long delay
and short delay functions enable the breaker curves to be manipulated for upstream
and downstream breaker and downstream breaker coordination

Cause of trip information If cause of trip is desired, the
$310+$ ETU can be fitted with a Digiview, a Panelmount Digiview or a Cause of Trip LED indicator.
When a fault condition occurs When a fault condition occurs
and one of these devices is and one of these devices is
connected to the ETU's test connected to the EUS sest
port, the $310+$ processor captures the fault information
and transmits to the cause of and transmits to the cause of
trip device, before the breaker trip device, before the breake
trips and goes offline. While powered via line current whe
the breaker is closed the the breaker is closed, the
Digiview and Cause f Trip LED indicator will retain the cause of trip information when the
breaker trips/opens because of their lithium batteries.

Zone selective interlocking communications
All 310+ ETUs can be configured With zone selective interlocking ZSI). With ZSI enabled, all
molded-case circuit breakers molded-case circuit breakers
from 15 A through 2500 A and beyond into Eaton's air circuit breaker offerings, can
communicate when a fault is communicate when a fault is
present. The breaker closest to the fault will override any customer-defined delay setting and open instantaneously to
clear the fault, allowing line-side breakers to remain closed and
online. ZSI is a proven solution online. ZSI is a proven solution
for reducing arc flash incident energy when a fault is present.

Ground fault alarm only, no trip feature
New to the $310+$ family of trip units is the ground fault alarm (GFA), no trip feature. Critical
applications require equipment applications require equipment
to stay online when a ground to stay onine when a ground
fault is present. ETUs configured with the GFA, no trip faature wil notify users that a ground fault
is present while keeping the spresent while keeping the
breaker online.

Technical data

$310+$	F-Frame	J-Frame	K-rrame	L-frame	N-Frame	R-Frame
Frame breaks (A)	$\begin{aligned} & 80 \\ & 160 \\ & 225 \end{aligned}$	$\begin{aligned} & 50 \\ & 100 \\ & 100 \\ & 160 \end{aligned}$	$\begin{aligned} & 125 \\ & 250 \\ & 400 \end{aligned}$	$\begin{aligned} & 250 \\ & 400 \\ & 600 \end{aligned}$	$\begin{aligned} & 800 \\ & \hline 1200 \\ & \hline \end{aligned}$	$\begin{aligned} & \begin{array}{l} 1600 \\ 2000 \\ 2050 \end{array} \end{aligned}$
Continuous current range (A)	15-225	20-250	55-400	100-600	320-1200	$800-2500$
Ground fault pickup (A)	16-225	10-250	50-400	50-600	160-1200	200-1200
Interrupting capacities at 480 Vac (kAIC)	$\begin{aligned} & 35 \\ & 65 \\ & 100 \end{aligned}$	$\begin{aligned} & 35 \\ & 65 \\ & 100 \\ & 1500 \\ & 200 \end{aligned}$	$\begin{aligned} & 35 \\ & 65 \\ & 100 \end{aligned}$	$\begin{aligned} & 35 \\ & 65 \\ & 100 \\ & 150 \\ & 200 \end{aligned}$	$\begin{aligned} & 35 \\ & 65 \\ & 600 \\ & 100 \end{aligned}$	65 100
100\% rated	No	Yes	Yes	Yes	Yes	Yes
Protection	$\begin{aligned} & \text { LS } \\ & \text { LSI } \\ & \text { LSGG } \\ & \text { LSIGG } \end{aligned}$	$\begin{aligned} & \text { LS } \\ & \text { LSI } \\ & \text { LSG } \\ & \text { LSA } \\ & \text { LSIG } \\ & \text { LSI(A) } \end{aligned}$	$\stackrel{\text { LS }}{\text { LSI }}$ LSG LSIG LSIIA ALSI ALSI(A)	$\begin{aligned} & \text { LS } \\ & \text { LSI } \\ & \text { LSG } \\ & \text { LSSA } \\ & \text { LSIG } \\ & \text { LSIA) } \\ & \text { AlsI } \\ & \text { ALSIG } \\ & \text { ASSI(A) } \end{aligned}$	LS LSG ${ }_{\text {LSIG }}^{\text {LS(A) }}$ LSIIA) ALSII ${ }_{\text {ALSSIIA }}$	
Arcflash Reduction Maintenance System	No	No	$\begin{aligned} & \text { ALSI } \\ & \text { ALSII(A) } \end{aligned}$	$\begin{aligned} & \text { ALSI } \\ & \text { ALSII(A) } \\ & \text { ALSI } \end{aligned}$	$\begin{aligned} & \text { ALSII } \\ & \text { ALSII } \end{aligned}$ $\begin{aligned} & \text { ALLSIU } \\ & \text { ALSA) } \end{aligned}$	${ }^{\text {ALSSI }}$ ALSI(A)
Interchangeable trip unit	No	Yes	Yes	Yes	No	Yes
High load alarm, trip (suffix B20)	Yes	Yes	Yes	Yes	Yes	Yes
Ground fault alarm, trip (suffix B21)	${ }_{\text {LSGG }}^{\text {LSG }}$	${ }_{\substack{\text { LSGG } \\ \text { LSG }}}^{\text {cem }}$	$\begin{aligned} & \text { LSG } \\ & \text { LSIG } \\ & \text { ALSSG } \end{aligned}$	$\begin{aligned} & \text { LSG } \\ & \text { LSGIG } \\ & \text { ALSIG } \end{aligned}$	$\begin{aligned} & \text { LSG } \\ & \text { LSIG } \\ & \text { ALSIG } \end{aligned}$	$\begin{aligned} & \text { LSGG } \\ & \text { LSIG } \\ & \text { ALSIG } \end{aligned}$
Zone selective interlock (suffix ZG)	Yes	Yes	Yes	Yes	Yes	Yes
Cause of trip indication DIGIVIEWRO6, TRIP-LED)	Yes	Yes	Yes	Yes	Yes	Integral to the $310+$
PM3 connectivity	Yes	Yes	Yes	Yes	No	No
Thu-cover accessories	No	Yes	No	Yes	No	No
Three-pole frame dimensions W $\times \mathrm{H} \times \mathrm{D}$ in inches (mm)	$4.13 \times 6.00 \times 3.38$ ($105.0 \times 152.4 \times 86.0$)	$\begin{aligned} & 4.13 \times 7.00 \times 3.57 \\ & (105.0 \times 177.8 \times 90.7) \end{aligned}$	$5.50 \times 10.13 \times 4.10$ $(149.7 \times 257.3 \times 104.1)$	$\begin{aligned} & 5.48 \times 10.13 \times 4.09 \\ & (139.2 \times 257.3 \times 104.0) \end{aligned}$	$8.25 \times 16.00 \times 5.50$ $(209.6 \times 406.4 \times 139.7)$	$\begin{aligned} & 15.50 \times 16.00 \times 9.00 \\ & (393.7 \times 406.4 \times 228.6) \end{aligned}$
Four-pole frame dimensions W $\mathrm{xH} \times \mathrm{D}$ in inches (mm)	N/A	$\begin{aligned} & 5.34 \times 7.00 \times 3.57 \\ & (135.6 \times 177.8 \times 90.7) \end{aligned}$	$\begin{aligned} & 7.22 \times 10.13 \times 4.10 \\ & (183.4 \times 257.3 \times 104.1) \end{aligned}$	$\begin{aligned} & 7.22 \times 10.13 \times 4.09 \\ & (183.4 \times 257.3 \times 104.0) \end{aligned}$	$\begin{aligned} & 11.13 \times 16.00 \times 5.50 \\ & (282.7 \times 406.4 \times 139.7) \\ & \hline \end{aligned}$	$\begin{aligned} & 20.00 \times 16.00 \times 9.00 \\ & (508.0 \times 406.4 \times 228.6) \\ & \hline \end{aligned}$
For additional information, please refer to the following publications:						
	FFrame	J.Frame	K-Frame	L-Frame	N-Frame	R.Frame
Product aid	PA01200006E	PA01200004E	PA01203EN	PA01200004E	PA01209001E	PA01209022
Time current curves	TC0120002E	TC01204008E	AD29167K	TC0120003E	TC0120909E	TC01210019E
Technical document	TD01203013E	TD01213001E	AD29170K	TD01200001E	TD03801003E	TD01209004E
Instuctional leaflet	1201203001E	IL01204002E	1 LO 2001 E	1 101207006E	IL01209005E	1299107N

Catalog numbering systems

Note: B2x suffixes cannot be combined with B2x suffixes.

250A J-Frame Assembly

250A J-Frame Electronic Trip Unit

8 Eaton 3lot liectronictrip vils

250/400A K-Frame Assembly

600A L-Frame Assembly

Eaton is dedicated to ensuring that reliable, efficient and safe power is available when it's needed most. With unparalleled knowledge of electrical power management across industries, experts at Eaton deliver customized, integrated solutions to solve our customers' most critical challenges.
Our focus is on delivering the right solution for the application. But, decision makers demand more than just innovative products.
They turn to Eaton for an unwavering commitment to personal support that makes customer success a top priority. For more information, visit www.eaton.com/electrical.

Powering Business Worldwide
© 2013 Eaton
All Rights Reserved
Printed in USA
Publication No. BR01209001E / Z14539
December 2013

All other trademarks are property of their respective owners.

